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We propose a physical mechanism for the arrest of domain coarsening in a system of two apposed

two-dimensional binary fluids. The two fluids are subject to a dynamic asymmetry: strong friction with

the environment allows domains in one fluid layer (the ‘‘bottom’’ fluid) to grow only diffusively,

whereas hydrodynamic flow leads to initially faster growth in the apposed fluid (the ‘‘top’’ layer). The

two fluids are energetically coupled so that domains of similar type interact favorably across the two

fluids. Using lattice Boltzmann simulations we observe that at a certain length scale, which is

independent of the coarsening state in the bottom layer, domain growth in the top layer comes to an

arrest. A phenomenological model suggests the pinning of domains across the two fluids to cause the

arrest in domain growth. The pinning results from the interplay between line tension and domain

coupling strength across the two fluids. We apply our model to a lipid bilayer for which we calculate the

length scale of the dynamically arrested domains in the top layer. We find domain extensions of about

or somewhat larger than 20 nm. Potential applications of our pinning model are to mixed lipid bilayers

that tend to phase separate and are subject to a dynamic asymmetry; these include model membranes

on a solid support and lipid rafts in the plasma membrane.
Introduction

The dynamics of phase separation often controls the structure

and properties of composite bulk materials such as binary alloys

and polymer blends.1,2 For two-dimensional fluid films interac-

tions with the environment add an additional level of complexity.

Here, lipid bilayers constitute the special type of two fluid layers

that are, generally, coupled and interact with their environment.

Each leaflet in a mixed lipid bilayer can be viewed as a fluid film

that is able to undergo phase separation. The biological scope of

this ability is embodied in the raft hypothesis,3 where certain

cholesterol-containing compositional domains with spatial

extension ranging from several tens to few hundreds of nano-

metres have been associated with a wide range of cellular

functions.4

From a basic physical viewpoint it is interesting to ask what

the potential consequences of the coupling between the two

leaflets in a lipid bilayer are. Here, coupling refers to the inter-

action of domains in one leaflet of the bilayer with domains in the

apposed leaflet. The existence of such inter-leaflet coupling has

been demonstrated and studied experimentally for a number of

model systems, including symmetric5 and asymmetric
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membranes.6,7 Theoretical modeling predicts equilibrium phase

diagrams that rationalize some of the experimental findings.8,9

Besides interacting with each other, the two leaflets of a lipid

bilayer are also in contact with their environments. Different

environments for the two leaflets entail consequences for the

structural and dynamic membrane properties. For example,

supported lipid bilayers are well known to exhibit essentially

immobilized domains on relevant experimental time scales.10,11

Although these domains exhibit fluid-like properties they appear

static in time and no coalescence is observed. This is the case for

large micrometre-sized domains but also for smaller sub-micro-

metre branched irregular networks of domains that have been

observed using AFM microscopy.12–14 Unlike for lipid mono-

layers on the air–water interface,15 the observed domain structure

in supported bilayers does not correspond to thermal

equilibrium.

The asymmetric environments of a lipid bilayer and the

emergence of finite-sized domains are also interesting aspects of

biological membranes. Raft sizes in the plasma membrane are

believed to be (roughly) in the range 20–100 nm. There are

a number of possible lipid-based physical mechanism that restrict

domain growth in the plasma membrane; they include the

formation of transient domains through critical fluctuations,16–18

non-equilibrium membrane recycling,19,20 and the competition

between short and long-range interactions between membrane

domains.21 Other mechanisms are protein-based, including the

presence of immobilized protein obstacles created by cytoskel-

eton attachment sizes22 and the fence and picket model,23 where
This journal is ª The Royal Society of Chemistry 2011
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transmembrane proteins line up along cytoskeletal protein fences

thereby acting as rows of pickets that limit domain growth. For

the latter two models the multitude of interactions of the cyto-

skeleton network (located exclusively inside the cell) with the

inner leaf of the plasma membrane24,25 introduces an asymmetry

by restricting the mobility of the inner leaflet.

The presence of finite-sized domains in supported bilayers, and

perhaps even the stability of membrane rafts, are a consequence

of the asymmetric influence of the environment on the lipid

bilayer. Below we suggest a general physical mechanism that

predicts the appearance of dynamically stabilized domains,

encountered under non-equilibrium conditions as a result of

domain coarsening and resulting from a dynamic membrane

asymmetry.

The two lipid monolayers that constitute a model membrane

can be viewed as two coupled two-dimensional fluids, each with

its own dynamical properties. Consider first a single two-

dimensional binary fluid that is quenched into its unstable

spinodal region. It phase-separates locally with subsequent

coarsening of its domains according to the dynamic scaling

hypothesis: the morphological structure remains statistically self-

similar and can be described by the time evolution of a charac-

teristic length scale L(t). Introducing friction between the binary

fluid and its environment generally slows down its phase-sepa-

ration dynamics. Next, consider two two-dimensional fluids, one

residing on top of the other (as in a lipid bilayer). Assume that

friction with the environment is weaker for the top than for the

bottom fluid (below, we completely neglect the friction with the

environment for the top fluid). Phase coarsening of the two

leaves of this fluid is then expected to proceed with different

speeds. That is, the characteristic length in the top leaf, Lt, grows

much faster than the characteristic length, Lb, in the apposed

bottom leaf. Such a scenario would strictly apply if the two leaves

of the bilayer were completely independent, i.e. with no inter-

leaflet coupling of their domains. However, if the two apposed

fluids are energetically coupled, their phase separation dynamics

will differ from that of independent fluids layers.

In the present work we investigate the consequence of inter-

leaflet coupling on domain coarsening of a bilayer with asym-

metric dynamical properties. The bilayer consists of two

apposed, binary, 1 : 1 fluid layers. It is asymmetric only in the

sense that the dynamical properties of the bottom leaf are slowed

down due to friction with the environment. To keep our model

simple and instructive we will assume that the bilayer is

symmetric in all other respects; i.e., with chemically identical

layers of the same composition). We will demonstrate that the

presence of inter-leaflet coupling (i.e., the presence of coupling

between domains across the bilayer) leads, effectively, to

a temporary arrest of the phase coarsening in the top leaf at

a certain length scale Lt¼ Lpin. This length scale depends only on

two material parameters of the bilayer but is independent of the

domain structure in the bottom leaf. Lattice Boltzmann simu-

lations of two apposed two-dimensional fluids and a phenome-

nological model indicate a non-equilibrium pinning mechanism

that leads to the arrest of domain growth in the top fluid. We

note that pinning mechanisms, such as contact line pinning or

pinning due to chemically heterogeneous surfaces, have been

studied intensively for three-dimensional systems 26. In contrast,

the present work considers domain pinning in a two-dimensional
This journal is ª The Royal Society of Chemistry 2011
fluid where the pinning sites evolve from the slow dynamics of

a second, apposed, fluid. Note that this situation is related to

phase-separating fluids that contain immobile impurities. Here

too, an arrest of domain growth was observed in previous

simulations 27.
Model

Consider two apposed two-dimensional binary fluids (a ‘‘top’’

and a ‘‘bottom’’ fluid). The order parameter of the top layer is ft,

and that of the bottom layer is fb. These order parameters are

related to the concentration differences of the different lipids, as

detailed in our previous publication,8 so that the equilibrium

phases correspond to feq
t,b ¼ �1. The densities rt and rb describe

the total density in the top and bottom layer. For small Mach

numbers considered here the density is nearly constant but small

deviations in density are needed to represent the pressure in eqn

(4) below.

We describe the free energy of the two apposed fluids using

a Ginzburg–Landau free energy, supplemented by a quadratic

coupling term that accounts for compositional differences

between the layers

F ¼
ð

da

�
crtlnrt �

1

2
f2

t þ
1

4
f4

t þ
1

2
ðVftÞ

2

þ crblnrb �
1

2
f2

b þ
1

4
f4

b þ
1

2
ðVfbÞ2

þLðft � fbÞ
2
o
:

(1)

Here, the integration runs over the lateral area of the bilayer,

and all lengths are measured with respect to a conveniently

chosen unit length. The prefactor c is a constant that we specify

in the discussion following eqn (16) below; in our simulations we

choose c ¼ 10/3. The coupling parameter L controls the strength

of the energetic interaction between compositional domains in

the two layers.28 The presence of inter-leaflet coupling influences

the equilibrium phase behavior of two apposed asymmetric

fluids. Specifically, there exists a critical coupling strength L ¼
Lc ¼ 3/2 that separates weak (L < Lc) and strong (L > Lc)

coupling. The former but not the latter case exhibits three phase

coexistence regions.8,9

Our central assumption in the present work is a dynamical

asymmetry of the two apposed fluids. That is, friction of the top

layer with its environment is much weaker than friction of the

bottom layer with its environment. We implement this assump-

tion into our model as a complete suppression of any flow within

the bottom layer: Molecules (and hence domains) in the bottom

fluid are able to diffuse but friction disables any flow in the

bottom leaf. (We point out that the findings of this work would

not be affected by the presence of some degree of hydrodynamic

coarsening in the bottom layer as long as there is a marked

dynamic asymmetry between the two fluids.) With the ‘‘no flow’’

condition, the dynamics of the order parameter of the bottom

fluid fb is given by a simple Cahn–Hilliard equation

vtfb ¼ V[MbVmfb
] (2)

where Mb is the mobility and mfb
¼ dF/dfb is the chemical

potential. In contrast to the bottom fluid, the top fluid is able to

evolve not only through diffusion but also through flow. This is
Soft Matter, 2011, 7, 2848–2857 | 2849
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what introduces the dynamical asymmetry between the two

layers. The top layer then satisfies an advected Cahn–Hilliard

equation of the form

vtft + V(ftut) ¼ V[MtVmft
], (3)

with the mobility Mt and chemical potential mft
¼ dF/dft. In

addition, the velocity ut of the top layer obeys the Navier–Stokes

equation

vt(rtut) + V(rtutut) ¼ �Vpt � ftVmft
+ ft + Vst. (4)

Here pt ¼ rt/3 is the pressure, st ¼ vrt[Vut + (Vut)
T] is a New-

tonian stress tensor (where the superscript T denotes the trans-

pose of a matrix), n is the kinematic viscosity, and ft¼�hut is the

friction force between the two fluids, with the corresponding

friction constant h. While our numerical method reproduces the

full Navier–Stokes equations we only require the Stokes

equations here,

ft + Vst ¼ cVrt + ftVmft
, (5)

since the Reynolds number for our simulations is small (Re� 1)

and inertial effects can therefore be neglected.

In this model we are neglecting fluctuations which would enter

the Cahn–Hilliard equations as an additional current and in the

Navier–Stokes equation as a fluctuating stress tensor and an

additional fluctuating force corresponding to the inter-layer

friction. These fluctuating forces and stresses are related to their

corresponding dissipative forces through a fluctuation–dissipa-

tion theorem. While it will be interesting to investigate the effect

of fluctuations in the future, they are outside the scope of this

paper.
Numerical method

To simulate these equations we use a lattice Boltzmann (LB)

method. Our method is based on the LB method for non-ideal

fluids by Orlandini et al.29 The Orlandini method simulated

a two-component fluid mixture with an imposed free energy. This

method was extended to examine bi-layer systems by considering

two such fluid mixtures that are coupled through a forcing term

related to the coupling free energy,8 but it was assumed that there

is no substrate but a strong frictional coupling between the layers

so that the two layers do not have an independent hydrodynamic

motion. Here we now assume that each layer has an independent

hydrodynamic motion and they are coupled through a friction

term proportional to the difference in local velocity in each layer.

Specifically we use four lattice Boltzmann equations, two each

for the total mass density rt,b and order parameter f for each

layer. The lattice Boltzmann equation is an equation for densities

fi associated to velocities vi. To keep the free energy in the

dimensionless form of eqn (1) we choose a time step Dt ¼ 0.1

and a lattice spacing of Dx ¼
ffiffiffi
2
p

=10. The velocity set for

our two-dimensional simulations is then given by

ð0; 0Þ; ð0;�
ffiffiffi
2
p
Þ; ð�

ffiffiffi
2
p

; 0Þ; ð�
ffiffiffi
2
p

;�
ffiffiffi
2
p
Þ for all possible permu-

tations of the signs. The time evolution of the densities is gov-

erned by the lattice Boltzmann equation:
2850 | Soft Matter, 2011, 7, 2848–2857
f
ðnÞ

i ðxþ viDt; tþ DtÞ ¼ f
ðnÞ

i ðx; tÞ þ
1

sðnÞ

h
f
ðnÞ0

i

�
rðnÞ; jðnÞ;PðnÞ

�

� f
ðnÞ

i ðx; tÞ
i
þ F

ðnÞ
i ; (6)

where s(n) is a relaxation time (chosen as 1 for the simulations in

this paper). The index n enumerates the lattice Boltzmann

equations. We choose n ¼ 1 for the total density of the top layer,

n ¼ 2 for the order parameter of the top layer, n ¼ 3 for the total

density of the bottom layer, and n ¼ 4 for the order parameter of

the bottom layer. This means we identify r(0) ¼ rt, r(1) ¼ ft, r(3) ¼
rb, and r(4) ¼ fb. The momentum for the top layer is j(1) ¼ rtut ¼P

if
(1)
i (x,t)yi and the momentum for the bottom layer is

j(3) ¼ rbub ¼
P

if
(3)
i (x,t)vi. For the order parameters these terms

are given by j(2)¼ ftj
(1)/rt and j(4)¼ fbj(3)/rb respectively. The local

pressure tensors are given by P(1) ¼ j(1)j(1)/r(1) + Pt, P(3) ¼ j(3)j(3)/

r(3) + Pb and P(2) ¼ r(2)j(1)j(1)/(r(1))2 + mft
1, P(4) ¼ r(4)j(3)j(3)/(r(3))2 +

mfb
1, where 1 represents a unit tensor. The pressure tensors Pt

and Pb here are the single layer pressure tensors of the binary

fluids, not including the interaction contributions. They are given

by Pt¼ [rt/3 + f2
t /2 + 3f4

t /4� ftV
2ft� (Vft)

2/2]1 + VfVf for the

top layer and an equivalent expression for Pb. The local

equilibrium distribution is then given by

f 0ðr; u;PÞ ¼ wi

�
rdi0 þ 3u:vi þ

9

2
P : vivi �

3

2
trðPÞ

�
(7)

with weights w0 ¼ 1, w1–4 ¼ 1/9 and w5–8 ¼ 1/36. The

F(n)
i represent the effect of the local force F(n) and are given by

F ðnÞ ¼ wi

�
3F ðnÞ:vi þ

9

2

�
F ðnÞuðnÞ þ uðnÞF ðnÞ

�

: vivi �
3

2
tr
�
F ðnÞuðnÞ þ uðnÞF ðnÞ

��
(8)

As mentioned above we consider here the special case of

a completely immobile bottom layer, i.e. ub ¼ 0 in our simula-

tions. The only relevant force is then the force on the top layer. It

has two contributions: the friction between the two layers with

a friction coefficient h and the interaction force due to the inter-

leaflet coupling term:

F(1) ¼ h(ub � ut) + 2LftV(fb � ft). (9)

For numerical efficiency we consider the case of low friction

between the layers in our simulations.
Simulations

We use our method to examine the phase-separation of a lipid

bilayer with asymmetric dynamics. In particular we are interested

in the phase-ordering dynamics as a function of the coupling

strength L. We show a series of snapshots of a relatively small

coupling parameter of L ¼ 0.0114 in Fig. 1. We observe that the

top layer does coarsen much faster initially. After about 5 000

iterations, however, the top morphology does essentially cease to

coarsen and the evolution is almost entirely due to the slow

diffusive growth of the bottom morphology. After about 500 000

iterations, the bottom morphology will match the top

morphology and the two layers will coarsen together. Note,

however, that this is an extremely slow process.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Snapshots of a 300 � 300 section of the bilayer morphology at nine different times (measured as number of iterations). The full simulation size

was 1800 � 1800. The images are composite images including information about both the top and the bottom layer. The A-rich-A-rich phase labeled

white, B-rich-B-rich phase labeled black, A-rich-B-rich phase labeled green, and B-rich-A-rich phase labeled red. The coupling parameter is L¼ 0.0114.

D
ow

nl
oa

de
d 

by
 M

ah
id

ol
 U

ni
ve

rs
ity

 o
n 

25
 M

ar
ch

 2
01

1
Pu

bl
is

he
d 

on
 3

1 
Ja

nu
ar

y 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
00

46
2F

View Online
What is the underlying mechanism for this apparent freezing

of the top morphology? Let us first consider the limiting case of

no coupling. In this situation the two layers will coarsen inde-

pendently. The bottom layer will coarsen entirely diffusively. The

diffusive coarsening dynamics obeys the dynamics scaling

hypotheses, i.e. morphologies at a later time are statistically

identical to morphologies at an earlier time if they are scaled by

an appropriate length scale L(t). For these diffusive systems the

appropriate growth law is the power law L f t1/3. The top layer

will coarsen hydrodynamically which leads to much faster

growth. Unfortunately the dynamic scaling hypothesis is not

valid for binary fluids in two dimensions.30 Instead of a statisti-

cally similar picture where later times simply correspond to larger

length-scales, here more and more near-circular drops are

enclosed in the larger non-circular domains. This is illustrated in

Fig. 2. Simple dimensional scaling analysis suggests that if the

scaling hypothesis was correct one should find a L f t scaling

law, as is indeed found in three dimensions. Furukawa31 argued
This journal is ª The Royal Society of Chemistry 2011
that even in two dimensions one can recover this scaling law if

one considers only the largest domains that do not constitute

circular domains.

We measure the length-scale L(t) in our simulations by

measuring the length of the interface LI(t) separating the

domains in a simulation box of extensions Lx and Ly. One

measure of the characteristic length-scale L(t) is given by30

LðtÞ ¼ LxLy

LIðtÞ
: (10)

We measured the evolution of this length scale for the top and

bottom morphology for a number of different coupling param-

eters, and some of these results are shown in Fig. 3. Let us first

consider the evolution in the absence of coupling (i.e. L ¼ 0).

There appears an initial fast coarsening in the top layer consis-

tent with the L f t scaling prediction followed by a slowdown

and a coarsening rate that more closely resembles L f t1/3.
Soft Matter, 2011, 7, 2848–2857 | 2851
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Fig. 2 Top layer morphology of uncoupled (L ¼ 0) hydrodynamic

coarsening after 43 223 iterations in a simulation with 1800� 1800 lattice

points. We observe that the largest length scale is already close to the

system size. Within these large domains many smaller circular domains

have accumulated, leading to the violation of the dynamic scaling

hypothesis.

Fig. 3 Log–log plot of the characteristic length-scale L, defined in eqn

(10), for the top and bottom layers. Results for five different coupling

parameters L are shown. The two curves for each L correspond to Lt

(upper curve) and Lb (lower curve). For L ¼ 0 we show three runs that

differ only in the initial noise, which allows us to estimate the variance of

different simulations. For large domain sizes there is a visible spread in

the data. Vertical lines with letters (a)–(i) indicate the times for which

snapshots are shown in Fig. 1 for L ¼ 0.0114 (blue squares).

Fig. 4 Nearly overlapping domains for L¼ 0.0522 after 2 531 iterations

in a 300 � 300 subpart of the 1000 � 1000 lattice. Coloring-scheme is the

same as in Fig. 1. Note that the top domains are leading the bottom

domains in the coarsening, i.e. that the mean curvature for the top

domains is less than that for the bottom domains.
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However, such an argument is difficult to make since finite size

effects start to become important very early into the apparent

L f t1/3 regime (see Fig. 2) even for the comparatively large

system size of 1800 � 1800. These finite size effects are also

noticeable in the variability of simulations with different initial

random noise, shown in Fig. 3.
2852 | Soft Matter, 2011, 7, 2848–2857
Even in the absence of a clear theoretical understanding of

two-dimensional hydrodynamic coarsening we can examine the

effect that a coupling to the bottom layer through the coupling

parameter L has. In Fig. 3 we show results for different coupling

parameters L. For each simulation there are two lines, one cor-

responding to the top layer and one corresponding to the bottom

layer. We notice that the bottom layer does indeed coarsen with

the L f 1/3 power law, as expected. The influence of the coupling

parameter is minor, but becomes noticeable for larger values of

the coupling parameter where we observe that the coarsening of

the bottom layer is accelerated by about a factor of about 1.25.

We return to a discussion of this effect below.

For small coupling parameters the initial coarsening of the top

layer will follow the behavior of the uncoupled system. However,

at some length-scale a slowing down of the coarsening is

observed. The larger the coupling parameter is, the sooner the

transition occurs until, for coupling parameters above L T 0.02,

the morphologies are so strongly coupled that the length-scales

of the two layers never diverge. Let us consider the case of L ¼
0.0114 for which we already discussed the morphology evolution

in Fig. 1. In the length scale graph of Fig. 3 we see that the length

scale L(t;L ¼ 0.0114) starts to diverge from L(t;L¼ 0) at around

t z 2000 and a length of L z 25. From direct comparison with

Fig. 1 we see that coarsening is not completely arrested by this

time. But by time 5000 the morphology is clearly pinned. The

length scale also reaches a plateau around L z 32 and essentially

stays there while the bottom morphology continues to coarsen

virtually unaffected by the top morphology. Around time t z 106

the bottom morphology reaches the size of the top morphology.

From Fig. 1 we see that at this point both morphologies overlap.

Looking closely we see that the coarsening of the bottom

morphology actually accelerates once its domains reach a size of

about half of the domain size of the pinned top morphology.

A similar acceleration of the diffusive coarsening is also

observed for larger coupling constants of L ¼ 0.0522 and 0.239.
This journal is ª The Royal Society of Chemistry 2011
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To understand why this is happening let us examine such a nearly

overlapping morphology in some more detail. In Fig. 4 we see

two nearly identical morphologies. Although small, the differ-

ences are important. Note that the black and green domains,
Fig. 5 Comparison of a strong coupling morphology (L ¼ 0.0522)

which has an accelerated growth with a purely diffusive morphology (L¼
0). Both images are taken after 43 223 iterations and show a 1000 � 1000

section. Note that the coupling in (a) leads to larger domains as well as an

accumulation of circular domains, reminiscent of hydrodynamic

coarsening.

This journal is ª The Royal Society of Chemistry 2011
representing the bottom morphology have a higher curvature.

The black and red domains, representing the top morphology are

somewhat less curved. The faster hydrodynamic domains of the

top layer are slightly ahead in coarsening of the domains in the

bottom layer which are only coarsening diffusively. So why does

this lead to an accelerated coarsening of the bottom layer? Not

only does the coupling pin the top layer, preventing the domains

to coarsen quickly. The slight mismatch of the domains in the top

influences the bottom layer and the diffusive dynamics work not

only to reduce the interface of the bottom layer, but also to

match the top layer. More formally this is the effect of L which

enters the chemical potential in eqn (2). This leads to enhanced

diffusion in the areas where the top domains are moving ahead of

the bottom domain. But recall that hydrodynamic coarsening in

two dimensions leads to a violation of dynamic scaling because

hydrodynamics can help make domains round, but does nothing

to round domains, so that they still have to coarsen diffusively.

This mechanism leads to the accumulation of droplets so

noticeable in Fig. 2. Does the enhanced diffusive coarsening in

the bottom layer lead to the same effect?

To answer this question let us now consider the same system at

a later time. In Fig. 5 (a) we see the domains after 43 223 itera-

tions. In this 1000 � 1000 image the mismatch of the top and

bottom morphologies is nearly invisible. (In the top left corner of

the image in Fig. 5 (a) there are two drops which have just

merged in the top layer whereas they are still separate in the

bottom layer). We compare this image with an identical diffusive

system without coupling shown in Fig. 5 (b). The uncoupled

system is known to obey the dynamic scaling law. Firstly we

notice that the enhanced coarsening leads to noticeably larger

domains. We already obtained this information in Fig. 3 by

noticing the larger length scales due to enhanced coarsening. But

another feature is evident: the morphology obtained with

enhanced diffusive coarsening does indeed contain many more
Fig. 6 Log–log plot of the characteristic velocity U for the top layers.

Results for five different coupling parameters L are shown. For L¼ 0 we

show two runs that differ only in the initial noise, which allows us to

estimate the variance of different simulations. For large domain sizes

there is a visible spread in the data.

Soft Matter, 2011, 7, 2848–2857 | 2853
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Fig. 7 Snapshots of the bilayer morphology at nine different times (measured as number of iterations) for a simulation size of 1800� 1800. The images

are composite images as in Fig. 1. The coupling parameter is L¼ 0.0025. Note that the large-scale features of the top morphology are pinned after about

40 000 iterations. This corresponds to the point where the length scale measure in Fig. 3 starts to diverge from the results for L ¼ 0.
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circular domains. This suggests that dynamic scaling will also be

violated for these diffusively coarsening morphologies.

We can also study the coarsening behavior by examining the

fluid velocity, responsible for hydrodynamic coarsening. Since in

hydrodynamic coarsening fluid flow is responsible for the growth

of the domains we would expect that a typical velocity scale

would behave as u f dL/dt. If we had viscous hydrodynamic

growth and dynamical scaling was valid we would therefore

expect that the L f t growth law leads to a constant typical fluid

velocity. Even if the dynamical scaling hypothesis were to hold

only for the largest domains31 one might expect that the scaling

of the velocity would continue to hold true. To examine this we

measured the typical velocity defined as

U ¼
P

xjuðx; tÞj
LxLy

: (11)

The observed velocities are shown in Fig. 6. In our simulations

we find that the typical velocity is not a constant, even for L ¼ 0.
2854 | Soft Matter, 2011, 7, 2848–2857
At the onset of coarsening the typical velocity rapidly increases.

However, after a maximum is reached, the velocity decreases.

The decrease is consistent with a power-law U f t�1/3. We

speculate that the decrease of the typical fluid velocity may be

due to the increased apparent viscosity of the large domains due

to the inclusion of many smaller domains.

For finite values of the coupling parameter L the velocity

initially follows the L ¼ 0 case. After some time we then observe

a marked decrease of the velocity compared to the decoupled

case. The divergence of the length scales and the velocities occurs

at essentially the same time, giving us two measures for when the

pinning process starts. For our later analysis it would be more

useful to obtain a pinning length scale. However, given the

breakdown of the dynamic scaling hypothesis, this is not a well

defined process. Consider e.g. the morphology in Fig. 2. The

length scale measure of eqn (10) suggests that the typical length

scale is about 80 for this morphology. But the typical length scale

of the large domains, which is the relevant length scale for the
This journal is ª The Royal Society of Chemistry 2011
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Fig. 8 Domain free energy according to our simplified analytical model,

displayed for �s ¼ 2.37. Open circles indicate positions where the ratio

Lt/Lb is an odd integer; of those only local minima are potential pinning

states. The first minimum occurs at x ¼ Lt/Lb ¼ 5. The corresponding

pinning length, Lpin ¼ s/L ¼ 38, is in agreement with our simulation

result; see Fig. 9.

Fig. 9 Comparison of the measured pinning length with the pinning

length observed in our simulations. There is good qualitative agreement

with theory, although our simple theory appears to underestimate the

pinning length in more complex situations by somewhat less than a factor

of 2.
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arrest of hydrodynamics through the pinning mechanism, is of

the order of 500.

This discrepancy also raises the question as to when exactly

pinning becomes important. In Fig. 3 we see that for the case of

L ¼ 0.0025 there is a divergence from the length scale observed

for L¼ 0 at around t z 30 000, but not a length scale plateau, as

seen for L ¼ 0.0114. So is there actual pinning observed for L ¼
0.0025? To answer that question we return to the real-space

images of the morphologies. These are shown in Fig. 7. Exam-

ining this time evolution we see that the top domains are initially

growing, but after the snapshot at t ¼ 43 000 the largest length

scales do no longer grow. There is still a noticeable evolution for

the small enclosed droplet domains, which continue to join or

evaporate, but the largest structures undergo very few major

rearrangements. So it is reasonable to state that we observe

pinning of the large domains, despite the fact that the length scale

measure of eqn (10) continues to grow, as shown in Fig. 3. In the

next section we consider the physical origin of the pinning

mechanism.
Analytical model for pinning

The physical origin of the arrest in phase coarsening can be

understood on the basis of a simple analytical model. Let us

represent the domain structure of the bottom layer by a pattern

of long, linear, equidistant, parallel stripes of thickness Lb; see

inset of Fig. 8. The order parameter adopts the equilibrium

values, fb ¼ �1, alternating between subsequent stripes.

Note that the restriction of the bottom layer’s dynamics to

diffusive motion effectively renders Lb statically fixed. Assume

that also the top layer contains a pattern of long stripes with

thickness Lt > Lb, and consider the rectangular section of a single

stripe with fixed area A, corresponding length z ¼ A/Lt, and

order parameter ft ¼ �1. The interfacial energy of the
This journal is ª The Royal Society of Chemistry 2011
rectangular section is 2sz where the free energy in eqn (1) implies

a line tension s ¼
ffiffiffi
8
p

=3 (which, strictly, requires the coupling

constant L to be small). The second contribution to the free

energy originates in the domain coupling across the two apposed

fluids. This is expressed by the mismatch energy,

L

ð
A

daðft � fbÞ2 (see the last term in eqn (1)), which yields

4LLbzN. Here, the function N¼N(Lt/Lb) denotes the number of

non-matching stripes (with fb¼ + 1) contained in A. Partial

overlap implies non-integer N. To calculate N we assume,

without loss of generality, that the lower face of the rectangular

section always aligns with the interface of a matching stripe in the

bottom fluid; see inset of Fig. 8. The number of stripes can then

be expressed as a function of the ratio x ¼ Lt/Lb through

NðxÞ ¼ I
�x

2

	
þ 2max

�
R
�x

2

	
;
1

2



� 1 (12)

where I(x) is the integer part of x and R(x) ¼ x � I(x) is the

remainder. The sum of line tension and domain mismatch energy

is thus

F ¼ 2sz + 4LLbzN(Lt/Lb). (13)

Noting the conservation of stripe area A ¼ zLt, defining both

the dimensionless energy ~f ¼ F/(2AL) and line tension ~s ¼ s/(2

LbL), and using x ¼ Lt/Lb leads to f(x) ¼ 2[�s + N(x)]/x which is

plotted in Fig. 8 for ~s ¼ 2.37. Each local minimum corresponds

to a metastable domain size. That is, for a small deformation the

reduction in interfacial free energy is less than the increase in free

energy due to the domain mismatch. Local minima appear only

above a sufficiently large x. Hence, initial growth of the top

domain will terminate in the first local minimum which is located

at x ¼ 2I(~s) + 1. For large x this becomes x ¼ 2~s, corresponding

to a domain size Lt ¼ Lpin with
Soft Matter, 2011, 7, 2848–2857 | 2855
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Lpin ¼
s

L
: (14)

Note that Lpin depends only on the line tension and coupling

parameter but is independent of the characteristic length Lb in

the bottom layer. Hence, arrest of domain growth in the top layer

occurs at fixed Lpin, irrespective of how far coarsening within the

bottom layer has progressed.

To compare our theory to the simulation results we measured the

pinning length by examining the largest length scales in our pinned

simulations by hand. This is not a well-defined process and leads to

a significant error. The measurements are particularly challenging

for large coupling parameters where the pinning occurs at a length-

scale close to the initial spinodal length scale. However, one can

certainly find the length-scale within about a factor of 2 or so with

this method. The results of this comparison are shown in Fig. 9. We

find that there is fairly good agreement between our simple theory

and simulations. We estimate that our theory will underestimate the

pinning length by about a factor of two. Presumably this is due to

the simplification of a regular striped pattern rather than a complex

spinodal decomposition pattern that allows for more freedom in the

coarsening of the top domains.
Discussion

Our analysis reveals a dynamic stabilization of microdomains in the

top leaflet during the process of phase coarsening. After the

quenching of the two fluid layers into an unstable region of the

phase diagram, domains in the top layer initially grow faster than in

the bottom layer, the difference arising from the difference in fric-

tion of the two fluid layers with their respective environments.

However, at a (scaled) characteristic size Lpin (see eqn (14)) the

domain growth in the top layer stops due to a pinning mechanism

with the smaller domains in the bottom leaf. Remarkably, the arrest

in domain growth is independent of the domain size in the bottom

layer and thus persists until the domains in the bottom layer have

diffusively grown to match those in the top layer (Fig. 1 (i)).

The characteristic length scale of the microdomains follows

from the scaled free energy in eqn (1), namely Lpin ¼ s/L;

see eqn (14). Recall that s ¼
ffiffiffi
8
p

=3 and L are both dimensionless

(scaled) quantities, and so is Lpin. In the following we scale Lpin

back to be measured in meters. To make the procedure trans-

parent we recall the scaled free energy corresponding to one of

the two layers, top (r / rtand f / ft) or bottom (r / rband

f / fb), according to eqn (1),

Ft=b ¼
ð

da

�
crlnr� 1

2
f2 þ 1

4
f4 þ 1

2
ðVfÞ2þLf2



(15)

Eqn (15) can be viewed as the scaled version of a correspond-

ing unscaled free energy F
0

t/b (where here and below unscaled

quantities carry a prime) with

F
0
t=b

kBT
¼
ð

da
0
r0
n

lnr0 þ f
0

tlnf
0

t þ
�
1� f

0

t

�
ln
�
1� f

0

t

�
þ c0f

0

t

�
1� f

0

t

�

þ K 0ðVf0Þ2þL
0�

f
0

t

�2
o

(16)

Here, r0and f0 are, respectively, the total area density (unit

m�2) and the mole fraction (dimensionless) of the fluid layer,
2856 | Soft Matter, 2011, 7, 2848–2857
kBTis the thermal energy, c0(dimensionless) characterizes the

nonideality of the binary fluid, K0 (unit m2) is the rigidity with

respect to compositional gradients, and L
0
(dimensionless) is the

inter-leaflet coupling parameter. We note that eqn (16) is valid

within the Bragg–Williams approximation of a binary lattice gas;

see also ref. 8. For c0 > 2 the fluid layer phase separates. If c0

remains sufficiently close to 2, eqn (16) implies the equilibrium

mole fractions f0 ¼ f
0

eq with f
0

eq ¼ 1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðc0 � 2Þ=8

p
and a line

tension of kBTs0 ¼ r0kBT(c0 � 2)2x0/2 where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K 0=ðc0 � 2Þ

p
is the characteristic decay length of the interfacial profile

f0ðx0Þ ¼ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðc0 � 2Þ=8

p
tanhðx0=x0Þ along a direction x0

normal to a phase boundary. To transform from F
0

t/b to Ft/b,

we rescale the area a ¼ aa0 (the unit of a is m�2), the energy

Ft/b ¼ gF
0

t/b/(3kBT), and the mole fraction f ¼ (f0 � 1/2)/b,

leading to a ¼ (c0 � 2)/K0, g ¼ 4/[(c0 � 2)K0r0], b2 ¼ 3(c0 � 2)/8,

L ¼ L
0
/[2(c0 � 2)], and c ¼ 4/[3(c0 � 2)2]. Using these trans-

formation rules we can show that the scaled line tension becomes

s ¼ s0g=ð3
ffiffiffi
a
p
Þ ¼

ffiffiffi
8
p

=3. More importantly, we can express the

scaled pinning length Lpin in eqn (14) in its unscaled form as

L
0

pin ¼ Lpin=
ffiffiffi
a
p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8K 0ðc0 � 2Þ

p
=ð3L

0 Þ or, equivalently, as

L
0

pin ¼
s0

L
0
r0
�

f
0
eq � 1=2

	2
(17)

The arrest of domain growth analyzed in our present work is

a general phenomenon for dynamically asymmetric and ener-

getically coupled fluid layers. Yet, we find it particularly inter-

esting to discuss the arrest of domain growth in the context of

lipid bilayers. Collins32 has argued that, roughly, the inter-leaf

domain coupling parameter L
0
can be estimated as L0 ( s0/(r0d0)

where d0 z 5 nm is the thickness of a lipid bilayer membrane, and

kBTs0 is the line tension between membrane domains. Typical

values of the line tension between membrane domains are

kBTs0 ¼ 1–10 pN,33 and the cross-sectional area per lipid is

roughly 1/r0 z 0.7 nm2. With that Collins’ prediction amounts to

L0 ( s0/(r0d0) ¼ 0.1–1 which is in good agreement with detailed

molecular dynamics simulations (based on a coarse grained

model) that resulted in L
0 ¼ 0.1–0.2.34 Inserting Collins’ estimate

into eqn (17) yields L
0

pin T d0/(f
0

eq� 1/2)2. Because the equilibrium

mole fraction of the phase separated fluid layer must fulfil the

relation |f
0

eq � 1/2| < 0.5 we obtain L
0

pin T 20 nm. It is interesting

to note that this length is at the lower end of reported sizes of

rafts in the plasma membrane. This could suggest that the

dynamic arrest of domain growth adds an additional mechanism

to the ones (listed in the Introduction) that have been suggested

recently. What our mechanism requires is a dynamic asymmetry

of the bilayer membrane. For the plasma membrane such

asymmetry could be introduced through the coupling of the

cytoplasmic face of the membrane with the cytoskeleton.35 We

finally note that also for supported model membranes a dynamic

asymmetry may be introduced through the presence of the solid

support.

In conclusion, we have investigated the dynamics of phase

coarsening for two coupled two-dimensional binary fluids. Both

fluids are initially identical 1 : 1 mixtures with one fluid exhibit-

ing slow dynamics. This implies for the other fluid a temporary

arrest of its phase coarsening. The arrest reflects the pinning of
This journal is ª The Royal Society of Chemistry 2011
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the large domains by the small ones in the apposed fluid. For

lipid bilayers the characteristic length scale of the arrested

domains is Lpin T 20 nm. We suggest that this pinning mecha-

nism may potentially contribute to the dynamics of domain

coarsening in supported bilayers and raft formation in the

plasma membrane.
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